A Stream Clustering Algorithm for Classifying Network IDS Alerts

Risto Vaarandi

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of
any copyrighted component of this work in other works. This paper has been accepted for publication at the
2021 IEEE International Conference on Cyber Security and Resilience, and the final version of the paper is
included in Proceedings of the 2021 IEEE International Conference on Cyber Security and Resilience
(DOI: 10.1109/CSR51186.2021.9527926)



A Stream Clustering Algorithm for Classifying
Network IDS Alerts

Risto Vaarandi
Centre for Digital Forensics and Cyber Security
Tallinn University of Technology
Tallinn, Estonia
firstname.lastname @ttu.ee

Abstract—Network IDS is a widely used security monitoring
technology for detecting cyber attacks, malware activity, and
other unwanted network traffic. Unfortunately, network IDSs are
known to generate a large number of alerts which overwhelm the
human analyst, with many alerts having low importance or being
false positives. This paper addresses this issue and proposes a
lightweight stream clustering algorithm for classifying IDS alerts
and discovering frequent attack scenarios.

Index Terms—network IDS alert classification, discovery of
attack scenarios, stream clustering, network security monitoring

I. INTRODUCTION

Over the last two decades, signature based network IDS has
become a predominant security monitoring technology used
by many organizations for detecting malicious network traffic
[1]-[3]. However, network IDSs are known to generate many
alerts, with a significant part of them having low importance or
being false positives [4]-[6]. Although many alert processing
methods have been suggested for reducing the workload of the
human analyst [4]-[20], they suffer from several drawbacks.

First, many approaches involve supervised machine learn-
ing, semi-automated data mining, and rule based methods [4],
[71, [8], [13]-[15], [17], [19], [20]. However, the creation of
training data sets for supervised machine learning algorithms,
interpretation of knowledge discovered with data mining meth-
ods, and rule development are time consuming activities and
require human experts. Since the threat landscape is rapidly
evolving and new IDS signatures are introduced at a fast pace,
these activities have to be repeated periodically that further
increases their cost. Second, several existing unsupervised
methods [5], [6], [9] are computationally expensive and thus
difficult to deploy on nodes with limited computing resources.
Third, most previous works have assumed that IDS alerts have
few basic attributes such as timestamp, transport protocol,
source and destination IP addresses and ports, and signature
ID. However, modern network IDS platforms often include
additional contextual information in the alert. For example,
if the alert has been raised for HTTP protocol, Suricata
IDS can augment it with attributes like HTTP method and
URL [1]. This contextual information is highly useful for
human security analysts and should also be considered during

This work was supported by research project RITA1/02-96-05, funded by
the Estonian Government.

automated alert processing. Finally, the implementations of
most previously suggested methods are not publicly available.

This paper addresses the above shortcomings and proposes a
lightweight unsupervised stream clustering algorithm for clas-
sifying IDS alerts and discovering frequent attack scenarios.
Also, we have developed an open source implementation of
the algorithm for Suricata IDS and have evaluated it during 3
months in a network of a large academic institution. The rest of
this paper is organized as follows — section II presents related
work, section III describes the stream clustering algorithm,
section IV discusses its implementation and performance eval-
uation, and section V outlines future work.

II. RELATED WORK

Kidmose, Stevanovic, Brandbyge and Pedersen [4] have
developed a supervised method which uses recurrent neural
networks and LSA for learning a mapping function that
converts textual alerts to vectors, so that alerts representing
the same incident will produce similar vectors. After gener-
ating vectors for labeled IDS alerts, they are clustered with
DBSCAN algorithm and each cluster is assigned a label of
the majority of core points in the cluster. Detected clusters
are then used for classifying incoming alerts, measuring their
distance from labeled core points. Tjhai, Furnell, Papadaki and
Clarke [9] have suggested the use of SOM neural networks
for generating two-dimensional map from IDS alerts that is
clustered with k-means algorithm. Clusters are then turned into
data points, and SOM neural networks and k-means clustering
are used again for dividing the points into false and true
positives. During preliminary experiments on smaller data sets,
the method identified most false positive alerts.

Shittu et al. [5] have proposed an unsupervised method
which arranges incoming IDS alerts into graphs by similarity.
A priority value is then assigned to each graph, so that graphs
dissimilar to other graphs would get the highest priority.
Although the method reduced the number of false positives
during the experiments, it also misclassified significant part of
true positives. Spathoulas and Katsikas [10] have suggested
an unsupervised clustering framework which merges alerts
into clusters based on similarity of timestamps, signature IDs,
source and destination IP addresses. The framework is also
able to detect missing security events and visualize clusters
which helps the human to spot critical alert groups. Our



previous paper [6] describes an unsupervised classification
method that employs frequent itemset mining and data clus-
tering algorithms for daily mining of IDS alert logs in order
to discover patterns for filtering alerts of low importance.

Long, Schwartz and Stoecklin [20] have suggested a su-
pervised clustering algorithm that creates data points from
IDS alerts of the same network session and divides the data
points into clusters to distinguish normal network sessions
from malicious ones. Giacinto, Perdisci and Roli [8] have
proposed a supervised stream clustering algorithm for IDS
alert compression, where the number of clusters and their
labels (attack classes) are learned during a training procedure.
Attack classes are then used by stream clustering algorithm
for merging alerts of the same attack class. Long, Shen, Li
and Ge [11] have described another alert compression method
which is derived from the ISODATA clustering algorithm.

Julisch and Dacier [13] have suggested a conceptual cluster-
ing technique for discovering knowledge for writing alert fil-
tering and correlation rules. Al-Mamory and Zhang [19] have
proposed a clustering algorithm for identifying false positive
alerts with the same root cause, so that human analyst can
write filters for such alerts. Treinen and Thurimella [17] have
applied an association rule mining algorithm for discovering
alert patterns that represent novel attacks in order to manually
update a rule base for detecting these attacks. Ma, Li and Li [7]
have employed a frequent sequential pattern mining method
for identifying signature ID patterns of frequent attacks and
used this knowledge for developing attack detection rules.

Viinikka et al. have studied the use of EWMA control
charts [16] and non-stationary autoregressive models [18] for
monitoring alert flows from verbose IDS signatures to discover
unexpected changes in the number of such alerts. Other IDS
alert processing methods include semi-automated analysis with
visualization tools [12], rule-based event correlation [14], and
supervised rule-based classification [15].

As discussed in section I, the algorithm proposed in this
paper is unsupervised and does not require assistance from
human experts like supervised, semi-automated, and rule based
methods. Also, unlike several other unsupervised methods, the
algorithm is lightweight and has a low computational cost.
Finally, unlike previous methods, the algorithm employs an
advanced alert model that harnesses application layer data.

III. STREAM CLUSTERING ALGORITHM FOR NETWORK
IDS ALERTS

The stream clustering algorithm relies on the properties
of IDS alert data (described in subsection III-A) and pro-
cesses incoming IDS alerts in two stages. Alerts are first
divided into groups by the alert group detection module
(AlertGroupModule, described in subsection III-B), with each
group representing malicious activity for the same external
host. Detected alert groups are then sent to the clustering
module (ClusteringModule, described in subsection III-C)
which either assigns the group to a cluster or regards it as
an outlier. For each cluster, a cluster centroid is maintained
which corresponds to some frequent alert pattern and has a

human readable representation. Since the set of clusters is
changing over time as new frequent alert patterns emerge
and existing patterns become infrequent, detected centroids
provide valuable information to human analysts about current
frequent attack scenarios and emerging threats.

In addition, ClusteringModule calculates alert group’s simi-
larity with its centroid (henceforth called the similarity score).
If the alert group is assigned to a cluster, the similarity score
ranges from O to 1, with values close to 1 indicating a strong
similarity with the cluster centroid. If the alert group is an
outlier, it receives the similarity score of -1. Therefore, when
the human analyst filters alert groups by similarity score (e.g.,
score < 0.5), unusual alert groups can be identified that are
either outliers or dissimilar to their cluster centroid.

A. Properties of Network IDS Alert Data

For studying the properties of IDS alert data, we have used a
data set that was collected on the external network perimeter
of a large academic institution during 1 year from October
2019 to October 2020 (366 days). The external network
perimeter was monitored by Suricata IDS with more than
40,000 signatures that generated 105,063,324 alerts. When
analyzing the data, we found that 10 most frequently matching
signatures produced 98,681,092 (93.93%) alerts. Also, 4 of
these signatures generated alerts on all 366 days, while all
10 signatures were triggering alerts during at least 174 days
(almost every second day). Although the IDS had more than
40,000 signatures, only 1,186 signatures triggered alerts during
the year, while 694 signatures produced less than 50 alerts
and 728 signatures produced alerts during less than 10 days.
According to above findings, most alerts are triggered by a
small fraction of frequently matching signatures, while most
signatures are seldom generating any alerts.

When investigating alerts from verbose signatures more
closely, we found that they manifest network scanning, at-
tempts to exploit old vulnerabilities, and other events of low
importance that are well known to security personnel and
do not pose any threat to organizational network. Similar
observations about frequently matching signatures have been
reported in other papers [6], [16], [18]. These findings suggest
that there are frequent patterns in IDS alert logs which match
a large part of the alerts and mining these patterns will help
to identify well known alerts of low importance.

We also made another observation — the same malicious
activity from an external host can often trigger many alerts.
For example, if a botnet member scans the external network
perimeter, hundreds of alerts can appear in a short time frame.
Also, many common attacks are matched by several signatures
which increases the volume of alerts even further. For example,
Fig. 1 displays alerts that are raised for the Plesk Apache zero-
day vulnerability attack. Thus, if several alerts are triggered for
the same external host in a short time frame, it is worthwhile to
consider these alerts together, since they are likely to represent
the same malicious activity. For the sake of brevity, any
malicious activity is called attack in the rest of the paper.



# Suricata IDS alert pattern for Plesk Apache zeroday
# vulnerability attack from June 2013 (CVE-2013-4878)

ET WEB_SERVER PHP tags in HTTP POST

ET WEB_SERVER allow_url_include PHP config option in uri

ET WEB_SERVER safe_mode PHP config option in uri

ET WEB_SERVER suhosin.simulation PHP config option in uri
ET WEB_SERVER disable_functions PHP config option in uri

ET WEB_SERVER open_basedir PHP config option in uri

ET WEB_SERVER auto_prepend_file PHP config option in uri

Fig. 1. Example alert pattern for a frequent attack.

B. Alert Group Detection Module

The algorithm presented in this paper processes a stream
of incoming IDS alerts, where alert stream A is defined as
an infinite alert sequence A = (a',a?,...). Each alert has
the following attributes — occurrence time ¢, signature ID id,
transport protocol proto, external IP address extip, external
port extport, internal IP address intip, and internal port intport.
For portless transport protocols like ICMP, extport and intport
attributes are set to 0. In addition, the alert can have application
layer specific attributes. For example, if the alert is triggered
by the signature which matches HTTP traffic, it has additional
HTTP-specific attributes such as HttpMethod and HittpUrl.
This alert model reflects the behavior of modern IDS platforms
which are able to add contextual data to IDS alerts for common
application layer protocols. Note that attributes are not created
for source and destination IP addresses and ports of alerts,
since although attackers can be often identified by source
IP address field, some signatures match victim responses to
attacks and report the attacker in the destination IP address
field. For distinguishing attackers from victims, home network
address has to be provided as an input parameter for Alert-
GroupModule which is used for creating extip, extport, intip,
and intport attributes from source and destination information
in the alert. If a is alert and attr is its attribute, a,;, denotes
the value of attribute attr for a. If A is a stream of alerts,
a’,a’ € A, and i < j, we assume that ai < a.

For grouping alerts for the same attack together, Alert-
GroupModule divides the stream of incoming alerts into
sessions, so that all alerts in one session are associated with
the same external IP address. If an incoming alert is observed
for which there is no session, it is considered the first alert in
the session. If more than SessionTimeout seconds have elapsed
since observing the most recent alert in the session, the session
is considered ended. Also, for preventing very long sessions
and ensuring their timely processing, maximum allowed length
of the session (i.e., time since observing the first alert) is
SessionLength seconds. More formally, if S = (a',...,a") is
a session of k alerts which are ordered by time of occurrence,
then al,,;, = al,q;, for 1 <, j < k. In addition, af —a{~" <
SessionTimeout for 1 < i < k, and af — a} < SessionLength.

When the session S ends, all alerts in the session are merged
into alert group G s. Let Ig be the set of all signature IDs that
triggered alerts in session S: Is = {a;q | a € S}. Also, let
Ls be the sequence obtained by sorting the elements of set
Is. Then the set V5"“"" denotes all values of attribute attr

of signature sig from session S:

Vsszg’am = {@aptr | a € S, a0 = sig}

Also, the set K'Y denotes all alert attributes except sig-
nature ID id and occurrence time ¢ created by signature sig
for alerts in session S. For example, if signature 23 does
not create application layer attributes and triggers two alerts
for internal hosts 192.168.1.1 and 192.168.1.2 during session
S, then K2 = {proto,extip, extport, intip,intport} and
VB — 1192.168.1.1,192.168.1.2}.

For session S, alert group G's is a data structure that holds
tuples (sig, attr, VS **) for every attribute attr of every
signature sig from Ig: ,

Gs = {(sig, attr, VS | sig € I, attr € K39}

In other words, the alert group holds all evidence extracted
from IDS alerts that describe the attack for some external
host. Note that the alert group does not contain information
about the order of IDS alerts in the session, since modern
IDS platforms employ multiple threads or processes for net-
work traffic analysis [1], [3] and alerts manifesting the same
attack are thus not always appearing in the same order. After
AlertGroupModule has created the alert group for the session,
it will be passed to ClusteringModule for further handling.

C. Clustering Module

Fig. 2 presents the algorithm implemented for clustering
incoming alert groups, with lines 17-32 in Fig. 2 describing the
main processing loop. ClusteringModule maintains centroids
for clusters and cluster candidates in memory, with each
centroid (and relevant cluster or candidate) being identified by
a sequence of sorted signature IDs. Therefore, each centroid
represents a specific attack type that manifests itself by alerts
triggered by the given combination of signatures.

1 procedure ClusteringModule (o, MaintTime,
2 MaxCandAge, CandTimeout, ClusterTimeout,
3 MinKeyValue, KeyInitValue,
4 MaxTableSize, EntropyThreshold)
5
6 after each MaintTime seconds do
7 foreach C in {set of clusters} do
8 if current_time - C.update_time > ClusterTimeout
9 drop cluster C
10 foreach X in {set of candidates} do
11 if current_time - X.update_time > CandTimeout
12 drop candidate X
13 elsif current_time - X.create_time > MaxCandAge
14 promote candidate X to cluster
15 PruneAttributeTables (MinKeyValue)
16
17 foreach Gg received from AlertGroupModule do
18 if cluster C with ID Lg exists
19 sim := FindSimilarity(Gs, C,
20 MaxTableSize, EntropyThreshold)
21 Merge (Gs, C, «, KeyInitValue)
22 C.update_time := current_time
23 elsif candidate X with ID Lg exists
24 sim := -1
25 Merge (Gs, X, «, KeyInitValue)
26 X.update_time := current_time
27 else
28 sim := -1
29 X := CreateCandidate(Gg, Lg)
30 X.create_time := current_time
31 X.update_time := current_time
32 Report (Gg, sim)
Fig. 2. Clustering module.



For each incoming alert group Gg for session .S, the cluster
with ID Lg is first looked up. If the cluster exists, alert group is
assigned to that cluster, a similarity with the cluster centroid is
calculated, and alert group is merged with the cluster centroid
(lines 19-22 in Fig. 2). If the cluster candidate with ID Lg is
found, alert group is merged with the candidate centroid and
similarity score is set to -1 (lines 24-26 in Fig. 2), otherwise
a new candidate is created with setting similarity score to -1
(lines 28-31 in Fig. 2). Finally, the alert group is reported with
its similarity score to the end user (line 32 in Fig. 2).

After each MaintTime seconds (by default, MaintTime=10),
a maintenance procedure is executed (lines 6-15 in Fig. 2)
which drops clusters and cluster candidates that have not
been recently updated (during the last ClusterTimeout and
CandTimeout seconds respectively). If a cluster candidate has
stayed in memory for more than MaxCandAge seconds without
being dropped, it will be promoted to cluster. Therefore,
the maintenance procedure ensures that the stream clustering
algorithm is able to adjust to environment changes, creating
clusters for new frequent alert patterns and dropping clusters
after corresponding patterns have become infrequent.

For the cluster and candidate centroid, ClusteringModule
employs the following data structure — for each attribute of
each signature from the centroid ID, there is a hash table called
attribute table which stores recently seen attribute values as
keys. If X is a cluster or cluster candidate, then X.sig.attr
denotes the attribute table of attribute attr of signature sig for
the centroid of X. Also, X.sig.attr[key| denotes the value of
key key in attribute table X.sig.attr. For each attribute table
key, the corresponding value ranges from O to 1 and represents
the frequency estimate the given key (attribute value) has been
seen in past alert groups. For example, if the centroid ID is
(23, 98) and the table for the intip attribute of signature 23
holds the key-value pair 192.168.1.1=0.75, then about 75% of
previously seen alert groups have contained the intip attribute
value 192.168.1.1 for signature 23.

For implementing frequency tracking in a memory efficient
way, each value p in the attribute table is maintained as an
exponentially weighted moving average (EWMA):

H1 = T1
. (D
{pi—a*xi—i-(l—a)*ml ,i>1
EWMA is known to estimate the average of last (2/c) — 1
observations from time series x1, Zo, ... (e.g., see [16]). When
a new candidate centroid is created for alert group (line 29 in
Fig. 2), attribute tables are created for each signature in the
alert group. Values for each attribute are then extracted from
the alert group and keys are created from values in relevant
attribute tables, initializing them to 1 (see CreateCandidate
procedure in Fig. 3). When an alert group is merged with a
candidate or cluster centroid (lines 21 and 25 in Fig. 2), keys
in attribute tables are updated with either 1 or 0 according to
(1), depending on whether a given attribute value is present
in the alert group (see Merge procedure in Fig. 3). If the
alert group has an attribute value that is not present as a

key in corresponding attribute table, new key is created and
initialized to KeylnitValue. ClusteringModule uses the default
value 1/((2/a)) —1) for the KeylnitValue parameter to indicate
that a new attribute value was seen for the first time for the
last (2/a)) — 1 alert groups.

procedure CreateCandidate (Gs, Lg)

X := initialize candidate with ID Lg
foreach sig in [Ig do
foreach attr in K'Y do
foreach value in Vglg‘at" do
X.sig.attr([value] := 1

Nele R e Y N N S N

10 return X

12 procedure Merge (Gg, X, «, KeyInitValue)
13

14 foreach sig in Ig do

15 foreach attr in Kgig do

16 foreach key in X.sig.attr do

17 if key € V9O x := 1 else x := 0
18 X.sig.attr[key] := a*x + (l-a)=*X.sig.attr[key]
19

20 foreach sig in Ig do

21 foreach attr in Kgf’g do

22 foreach value in V;lg’attr do

23 if not exists X.sig.attr[value]

24 X.sig.attr[value] := KeyInitValue

Fig. 3. Centroid creation and update procedures.

For measuring the similarity between the alert group Gg
and the centroid of its cluster C', we define the attribute table
lookup function for the centroid of C, signature sig, attribute
attr, and attribute value v as follows — if key v exists in table
C.sig.attr, then Lookup(C,sig,attr,v) = C.sig.attrv],
otherwise Lookup(C, sig,attr,v) = 0. The similarity for the
centroid of C, alert group Gg, and attribute attr of signature
stg is defined as follows:

Zvev;ig,attr Lookup(C, sig, attr,v)

|V§ig,attr|

Simsig,attr (G57 C) =

(2)
Also, the value of the FindSimilarity function (lines 19-20
in Fig. 2) is calculated as follows:

ZattrEK;"’g SimSigvattr(GSa C)
K57
[Is|

According to (3), similarity between the alert group and
the centroid of its cluster ranges from 0 to 1, with values
close to 1 indicating that the attribute values of the alert group
have been frequently seen in the past, while lower similarity
values reveal the presence of unusual attribute values. Since
the similarity score -1 is assigned to outlier alert groups (lines
24 and 28 in Fig. 2), alert groups with lower similarity scores
under some user-defined threshold (e.g., 0.5) represent unusual
attacks which deserve closer attention from human analysts.

When calculating similarity for an attribute (see (2)), the
following issue will arise — if the attribute table contains many
keys with small values, lookup function will always yield a

Zsigels

3)



small positive value, or 0 if key is not present. For example,
this scenario is common for extport attribute, since many
attacks are launched from a randomly selected port. In general,
the presence of many keys with similar values indicates that
the attribute can assume any value with an equal probability.
Since no value can be regarded as unusual, a high similarity
score should be returned for all values.

For detecting such cases, normalized information entropy is
calculated for each attribute table. If the attribute table has &
keys with values (v1, ..., vg), the values are turned into a vector

. k
with k components (21, ...,zx), where z; = v;/(3;_, v;),
and 1 + ... + xx = 1. Normalized information entropy for
attribute table is calculated as follows:

“4)

— 3 @ xlog(xi)/log(k) , k> 1
-1, k=1

According to (4), normalized information entropy ranges
from O to 1 if £ > 1 and is -1 for £ = 1. Also, values
close to 1 indicate that most values in the attribute table are
similar. Therefore, if the attribute table for attribute attr of
signature sig contains MaxTableSize or more keys and its
entropy is at least EntropyThreshold, simg;g qtir 1S set to 1
when calculating the value of FindSimilarity function (see (3)).

Since ClusteringModule keeps cluster and candidate cen-
troids in memory, one important design consideration is the
memory consumption of the algorithm. Fortunately, as dis-
cussed in subsection III-A, a small fraction of signatures are
triggering IDS alerts, and therefore the number of centroids
remains modest (it is also illustrated by experiment data in
section IV). However, the attribute tables can nevertheless
grow very large over time, and ClusteringModule employs the
following technique for addressing this issue — if an attribute
table has a key with a value smaller than MinKeyValue, the key
is dropped from the table (line 15 in Fig. 2). In other words, if
the attribute value has a very low frequency, frequency value
of 0 is assumed. ClusteringModule assumes the default value
KeyInitValue / 5 for the MinKeyValue parameter.

IV. ALGORITHM IMPLEMENTATION AND PERFORMANCE

In order to evaluate the performance of the algorithm, we
have created its publicly available implementation in Perl
(https://ristov.github.io/scas) that provides AlertGroupModule
and ClusteringModule as UNIX command line tools. Alert-
GroupModule receives data from Suricata IDS in EVE-log
format and outputs alert groups in JSON format. Currently, the
module creates 25 application layer specific attributes that are
supported by Suricata for HTTP, TLS, DNS, SMTP, and SSH
protocols. ClusteringModule outputs processed alert groups in
JSON format, and in our environment, alert groups are sent
to ElasticStack based monitoring and visualization solution.

We have tested the algorithm during 3 months (92 days)
for clustering alerts from Suricata IDS in a network of a large
academic institution. The algorithm was executing on a 7 year
old server with Intel Xeon E5-2620v2 CPU and Linux as an
OS. During 3 months, 22,327,086 alerts were triggered by IDS

(242,685.72 alerts per day). AlertGroupModule was running
with settings SessionTimeout=60 and SessionLength=300, and
divided incoming alerts into 2,236,198 groups (24,306.5 per
day). On average, each group was generated for 9.98 alerts
that were triggered by 1.08 signatures (the largest number of
signatures per group was 64). Therefore, AlertGroupModule
achieves a high compression rate for original alert data.

For evaluating ClusteringModule with different settings, we
executed three instances of it by setting CandTimeout=H*3600
and MaxCandAge=D*24*3600 (i.e., H and D reflect the num-
ber of hours and days). Both H and D were set to 1, 3, and 10
for the first, second, and third instance respectively. In other
words, smaller values of H and D create clusters for frequent
alert patterns in shorter time frames, while larger values
identify as clusters less frequent patterns that appear over
longer periods of time. ClusterTimeout was set to 7*24*3600
(i.e., 1 week), MaxTableSize to 50, EntropyThreshold to 0.8,
and « to 0.01 for all instances, while other parameters assumed
their default values. Note that setting o to 0.0l means that
attribute tables represent the attribute value frequencies for the
last 199 alert groups. Table I provides detailed performance
data for all instances.

TABLE 1
ALGORITHM PERFORMANCE
Instancel Instance2 Instance3
Avg # of clusters® 39.36 48.98 56.07
Max # of clusters 46 57 64
Avg # of candidates® 19.16 32.40 79.17
Max # of candidates 59 91 159
Max consumed memory | 95,856 KB | 97,584 KB 108,276 KB
CPU utilization® 1.44% 1.67% 1.98%
Alert groups with:
similarity = 1 44.36% 43.90% 43.82%
0.9 < similarity < 1 18.57% 19.04% 19.39%
0.8 < similarity < 0.9 20.06% 20.63% 21.10%
0.7 < similarity < 0.8 6.30% 6.40% 6.29%
0.6 < similarity < 0.7 3.33% 3.32% 3.29%
0.5 < similarity < 0.6 0.47% 0.47% 0.46%
0 < similarity < 0.5 0.03% 0.03% 0.03%
similarity = -1 6.88% 6.21% 5.62%

“averages are given per day.
bsince the implementation is single-threaded, given per one CPU core.

According to Table I, each ClusteringModule instance cre-
ated a moderate number of clusters and cluster candidates
with memory footprint of 95,856-108,276 KB, utilizing one
CPU core by 1.44-1.98%. Since AlertGroupModule consumed
17,824 KB of memory and utilized one CPU core by 0.05%,
the stream clustering algorithm has modest resource require-
ments and can thus be deployed on commodity hardware or
directly on IDS appliances.

Also, only 5.62-6.88% of alert groups were reported as
outliers, while 82.99-84.31% alert groups had the similarity
score 0.8 or higher. Considering that there is one alert group
for 9.98 IDS alerts and a small part of alert groups require
closer inspection, the algorithm can significantly reduce the
workload of security analysts with low computational costs.



The algorithm’s performance is better or similar to other
methods that detect irrelevant alerts and have achieved alert
reduction rates of 42.6-98.7% [5], [6], [9], [13], [15], [19].

When alert groups are divided into classes by similarity
score (see Table I), three instances produce classes of fairly
similar size, since most alert groups are assigned to the same
clusters detected by all three instances. However, larger values
of H and D allow for the detection of more attack types.
Our implementation supports on-demand reporting of cluster
centroids in human readable format which provides security
analysts with useful insights into common attack scenarios.
In our environment, detected cluster centroids have helped to
identify the activity of new botnets and other novel threats
(see Fig. 4 for few examples of detected centroids).

# A centroid for one signature representing Zyxel NAS device
# remote command injection vulnerability (CVE-2020-9054)

# attack. Note that past attacks have always involved the

# same malicious URL (its attribute table value is 1).

ET EXPLOIT Zyxel NAS RCE Attempt Inbound (CVE-2020-9054) M1

Attribute HttpUrl:
/adv, /cgi-bin/weblogin.cgi?
username=admin%27%3B1s%20%23&password=asdf = 1

# A centroid for three signatures that represent DrayTek
# Vigor router vulnerability (CVE-2020-8515) attack.

# Note that over 99% of past attacks have originated from
# Hoaxcalls botnet that employs user agent string "XTC".

ET WEB_SERVER WebShell Generic - wget http - POST

ET WEB_SERVER 401TRG Generic Webshell Request -
POST with wget in body

ET EXPLOIT Multiple DrayTek Products Pre-—authentication
Remote RCE Inbound (CVE-2020-8515) M2

Attribute HttpUserAgent:
XTC = 0.999999999999994

Fig. 4. Examples of cluster centroids that represent common attack scenarios.

In order to evaluate the precision and recall of the algorithm
for identifying unusual attacks, we measured its performance
during external pen-testing and during common network
scanning activity generated with several scanning tools. We
expected alert groups from pen-testing being classified as
outliers, and alert groups from scanning being assigned to
clusters with high similarity scores. Pen-testing and scanning
activities triggered 115,770 and 53,671 alerts which were
divided into 76 and 28 alert groups respectively. 75 alert
groups of unusual attacks were classified as outliers by all
three instances, while 1 alert group received a high similarity
score of 0.8. Assuming that alert groups with similarity scores
0.8 or higher are of low importance and represent routine
scanning, recall would be 75/76 ~ 98.68%. Also, 16 alert
groups of scanning received the similarity score of 1, while
for 12 alert groups the similarity scores ranged from 0.88 to
0.9, yielding the precision of 100%. If precision is estimated
conservatively and 12 alert groups of scanning with similarity
scores below 1 are regarded as false positives, precision would
still remain relatively high: 75/(75+12) ~ 86.21%. These
results are comparable to the performance of other recent
methods that have achieved the precision of 86.5-99.6% and
recall of 71.9-99.9% [4]-[6], [9].

V. FUTURE WORK

Currently, the stream clustering algorithm is not able to
detect a sudden increase in the volume of alert groups with
high similarity scores. However, such changes might indicate
a DDoS attack or increased botnet activity. For addressing
this issue, we plan to augment the algorithm with time series
analysis methods. We are also considering the development of
other similarity functions for the clustering module.

REFERENCES

[1] https://suricata-ids.org

[2] https://www.snort.org

[3] https://www.cisco.com/c/en/us/products/security/ngips/index.html

[4] Egon Kidmose, Matija Stevanovic, Sgren Brandbyge, and Jens M.
Pedersen, “Featureless Discovery of Correlated and False Intrusion
Alerts,” IEEE Access, vol. 8, 2020, pp. 108748-108765.

[5] Riyanat Shittu, Alex Healing, Robert Ghanea-Hercock, Robin Bloom-
field, and Rajarajan Muttukrishnan, “OutMet: A New Metric for Pri-
oritising Intrusion Alerts using Correlation and Outlier Analysis,” 2014
IEEE Conference on Local Computer Networks, pp. 322-330.

[6] Risto Vaarandi and Karlis Podins, “Network IDS Alert Classification
with Frequent Itemset Mining and Data Clustering,” 2010 International
Conference on Network and Service Management, pp. 451-456.

[7]1 Jie Ma, Zhi-tang Li, and Wei-ming Li, “Real-Time Alert Stream
Clustering and Correlation for Discovering Attack Strategies,” 2008
International Conference on Fuzzy Systems and Knowledge Discovery,
pp. 379-384.

[8] Giorgio Giacinto, Roberto Perdisci, and Fabio Roli, “Alarm Clustering
for Intrusion Detection Systems in Computer Networks,” 2005 Inter-
national Workshop on Machine Learning and Data Mining in Pattern
Recognition, pp. 184-193.

[9] Gina C. Tjhai, Steven M. Furnell, Maria Papadaki, and Nathan L. Clarke,
“A preliminary two-stage alarm correlation and filtering system using
SOM neural network and K-means algorithm,” Computers and Security,
vol. 29, 2010, pp. 712-723.

[10] Georgios P. Spathoulas and Sokratis K. Katsikas, “Enhancing IDS
performance through comprehensive alert post-processing,” Computers
and Security, vol. 37, 2013, pp. 176-196.

[11] Chun Long, Hanji Shen, Jun Li, and Jingguo Ge, “An SR-ISODATA
Algorithm for IDS Alerts Aggregation,” 2014 IEEE International Con-
ference on Information and Automation, pp. 92-97.

[12] Damien Crémilleux, Christophe Bidan, Frédéric Majorczyk, and Nicolas
Prigent, “VEGAS: Visualizing, Exploring and Grouping AlertS,” 2016
IEEE/IFIP Network Operations and Management Symposium, pp. 1097—
1100.

[13] Klaus Julisch and Marc Dacier, “Mining Intrusion Detection Alarms for
Actionable Knowledge,” 2002 ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pp. 366-375.

[14] Benjamin Morin and Hervé Debar, “Correlation of Intrusion Symptoms:
an Application of Chronicles,” 2003 International Symposium on Recent
Advances in Intrusion Detection, pp. 94-112.

[15] Tadeusz Pietraszek, “Using Adaptive Alert Classification to Reduce
False Positives in Intrusion Detection,” 2004 International Symposium
on Recent Advances in Intrusion Detection, pp. 102-124.

[16] Jouni Viinikka and Hervé Debar, “Monitoring IDS Background Noise
Using EWMA Control Charts and Alert Information,” 2004 International
Symposium on Recent Advances in Intrusion Detection, pp. 166-187.

[17] James J. Treinen and Ramakrishna Thurimella, “A Framework for the
Application of Association Rule Mining in Large Intrusion Detection
Infrastructures,” 2006 International Symposium on Recent Advances in
Intrusion Detection, pp. 1-18.

[18] Jouni Viinikka, Hervé Debar, Ludovic Mé, Anssi Lehikoinen, and Mika
Tarvainen, “Processing intrusion detection alert aggregates with time
series modeling,” Information Fusion Journal, vol. 10(4), 2009, pp. 312—
324.

[19] Safaa Al-Mamory and Hongli Zhang, “Intrusion detection alarms reduc-
tion using root cause analysis and clustering,” Computer Communica-
tions, vol. 32, 2009, pp. 419-430.

[20] Jidong Long, Daniel Schwartz, and Sara Stoecklin, “Distinguishing False
from True Alerts in Snort by Data Mining Patterns of Alerts,” 2006 SPIE
Defense and Security Symposium, pp. 62410B-1-62410B-10.



