
How to Build a SOC on a Budget

Risto Vaarandi and Sten Mäses

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other 
uses, in any current or future media, including reprinting/republishing this material for advertising or 

promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of 
any copyrighted component of this work in other works. This paper has been accepted for publication at the 
2022 IEEE International Conference on Cyber Security and Resilience, and the final version of the paper is 

included in Proceedings of the 2022 IEEE International Conference on Cyber Security and Resilience 
(DOI: 10.1109/CSR54599.2022.9850281) 



How to Build a SOC on a Budget
Risto Vaarandi

Centre for Digital Forensics and Cyber Security
Tallinn University of Technology

Tallinn, Estonia
risto.vaarandi@taltech.ee

Sten Mäses
Centre for Digital Forensics and Cyber Security

Tallinn University of Technology
Tallinn, Estonia

sten.mases@taltech.ee

Abstract—During the last decade, many security-aware orga-
nizations have built a Security Operations Center (SOC) which
refers to security tools and a team of security personnel using
these tools according to predefined procedures. However, creating
an organizational SOC can involve a significant investment into
hardware and software, and setting up a SOC can be a complex
and lengthy process. Although SOC related issues have received a
considerable amount of attention in recent academic literature,
there are very few recommendations on how to build a SOC
in a cost-efficient and scalable way with open-source and free
solutions. This paper fills this gap and describes the use-case
of a SOC in an academic organization, with the main emphasis
being on technical details and implementation recommendations.

Index Terms—cyber security, security monitoring, incident
detection and response, security operations center, SOC

I. INTRODUCTION

Since the complexity of cyber threats and the number
of cyber attacks are steadily increasing, many organizations
are running a Security Operations Center (SOC) for timely
detection of security incidents [1]. SOC is usually defined
as a combination of people (security personnel), technology
(security tools), and procedures that define the workflow [2]–
[4]. One of the most important SOC technologies is the
Security Information and Event Management system (SIEM)
that collects, processes, and visualizes security events and
other data from the entire organization.

Although several aspects of SOC have received considerable
attention, there are almost no papers describing the actual
implementation of a SOC with detailed recommendations on
how to build it. Other important questions that have received
little attention so far are the cost of creating a SOC and its
scalability – according to recent studies, limited budget and
insufficient scalability of SOC tools are key concerns that SOC
managers face [5], [6].

This paper addresses those research gaps and describes a
cost-efficient and scalable SOC implementation that relies on
open-source and free solutions, and has been operated since
2019 at Tallinn University of Technology (the second largest
university in Estonia with 12,000+ users of the organizational
network and IT systems). The remainder of this paper is
organized as follows – section II discusses related work,
section III describes the technology, human resources, and
procedures used in SOC, and section IV concludes the paper.

II. RELATED WORK

In recent research literature, several aspects of SOC have
received considerable attention. For example, several papers
have suggested the use of various machine learning algorithms
for event prioritization and anomaly detection [7]–[11]. Also,
some papers have discussed the architecture of SOC for
generic or specific environments [3], [6] and defined properties
for SOC alarms that facilitate efficient alarm handling [12].
There are also papers on security concerns and other technical
and non-technical issues that appear in SOCs [1], [2], [5].

Vielberth, Böhm, Fichtinger and Pernul have composed an
extensive research literature survey for identifying the nature
of a modern SOC and open challenges [1]. The challenges
include monotonous tasks of SOC analysts, insufficient shar-
ing of domain knowledge about IT environment and assets
between experts and SOC analysts, limited knowledge sharing
and collaboration between SOC staff, visualization capabilities
that need improvement, insufficient level of automation offered
by SOC tools, and the need for privacy related regulations.
Since a SOC can handle a wide variety of sensitive private
and system data, János and Dai have pointed out the need
for properly securing the SOC environment and raising the
awareness of SOC staff [2].

Kokulu et al. have conducted a number of semi-structured
interviews with SOC managers and analysts for finding tech-
nical and non-technical issues in SOCs [5]. Detected issues
include low visibility on devices and network topology, insuffi-
cient detection and handling of specific attack types, and insuf-
ficient training for analysts. Also, SOC managers highlighted
limited budget and lack of scalability of SOC technologies as
issues. Interestingly, high rate of false positives was not found
to be a serious obstacle. This finding has been questioned
by Alahmadi, Axon and Martinovic who have described five
properties of SOC alarms (Reliable, Explainable, Analytical,
Contextual, and Transferable) that facilitate efficient validation
of alarms [12].

In [3], Radu has presented a generic SOC architecture where
SIEM consists of generation layer (generation of security
events on monitored devices), acquisition layer (transmission
of events from devices to central SIEM event store), data
manipulation layer (central event processing by SIEM), and
presentation layer (visualization of events by SIEM). The
paper also emphasizes that while dedicated monitoring devices



like IDS appliances are often controlled by SOC staff, network
devices like switches, routers, firewalls, and IPS appliances
that generate security events are usually managed by network
admins outside SOC.

In [6], Weissman and Jayasumana have proposed a SOC
architecture for monitoring IoT devices, and have highlighted
key challenges – limited budget, insufficient scalability of
SOC event databases for receiving large volumes of events,
insufficient analyst expertise and alert fatigue.

Demertzis et al. have presented a network anomaly detection
method for use in SOC which employs an ensemble of
support vector machine, neural network, random forest, and
k-nearest neighbors based classifiers [11]. The ensemble is
used for processing the data points that represent network
flows. According to the experiments conducted by the authors
on five data sets, the ensemble had the same performance as
its best classifier. In [8], Bienias, Kołaczek and Warzińsky
have proposed an architecture for a network anomaly detection
module which is designed for use in SOC.

Feng, Wu and Liu have described a machine learning frame-
work for SOC that assesses the risks related to individual users
[7]. First, a training data set is created for supervised machine
learning algorithms, where each data point describes some
user, with features of the data point derived from alerts for
that user, user’s social connections graph analysis, etc. Also,
the data point labels are automatically derived by applying
text mining algorithms to SOC analyst notes. The authors
have evaluated four classifiers that are based on multi-layer
neural network with two hidden layers, random forest with 100
estimators, support vector machine with radial basis function
kernel, and logistic regression. According to the authors,
multi-layer neural network and random forest based classifiers
achieved the best performance during the experiments.

Najafi et al. have suggested the MalRank anomaly detection
algorithm for domain names, IP addresses, and other enti-
ties extracted from SOC event logs [10]. After extraction,
entities are organized into a graph as nodes, with graph
edges representing relations between the entities. MalRank
uses information about known malicious nodes (e.g., obtained
from threat intelligence) for calculating maliciousness score
for other nodes in the graph.

Gupta, Traore and Quinan have presented a supervised
method for classifying SOC events that relies on past event
data that have been labeled by SOC analysts [9]. First, cate-
gorical features of past event data are converted into numerical
features with one-hot encoding, and additional features are
derived from existing ones. After that, a classifier is trained
on this data set, and the classifier is then used for detecting
future high-priority SOC events. The authors experimented
with XG Boost, logistic regression, and deep neural network
based classifiers, with the latter having the best performance.

Although a number of papers have been published on the de-
sign, architecture, and other aspects of SOC, there are very few
papers that provide detailed recommendations on how to build
a production SOC. The paper by de Céspedes and Dimitoglou
is one notable exception [13]. The authors have created a SOC

for a university department with under 50 employees, with the
department’s network containing a firewall and a number of
servers, network devices, and other network nodes. For SOC
technology, only open-source tools were used for reducing
the cost of building the SOC, with Graylog log management
system, Grafana visualization framework, OSSIM SIEM, Snort
IDS, and pfSense firewall being the main SOC tools. In order
to reduce the cost of SOC even further, SOC tools were
implemented on virtual machines. As mentioned in the paper,
the SOC was built as a proof-of-concept solution for future
research and teaching activities, and the paper does not provide
any details about its production use over a longer period of
time. In the following section, we will describe a low-cost
production SOC for a large academic institution that has been
operational since 2019.

III. DESCRIPTION OF SOC

A. Background

The SOC described in this section has been operational
since April 2019 at Tallinn University of Technology, Estonia
(TalTech). TalTech is the second largest university in Estonia,
having about 2,000 employees and over 10,000 students. The
university’s infrastructure is complex and largely managed
by the IT support unit that exercises control over network
infrastructure, firewalls, and most critical servers. However,
some parts of the infrastructure (e.g., academic computing
clusters and specific departmental sub-networks) are main-
tained by academic personnel. The management of the univer-
sity’s network is further complicated by the bring-your-own-
device policy, with a significant amount of end-user devices
in the university’s private network being not maintained by
the IT support unit. During everyday use, the university’s
infrastructure sees considerable amount of network traffic,
with the network bandwidth consumption on the outer network
perimeter routinely being 1.5–2 Gbit/s.

The SOC of TalTech was created for achieving the following
three objectives:

• improving organizational security posture by advancing
threat detection and analysis,

• offering learning opportunities to students by involving
them as security analysts,

• facilitating academic cyber security research by using
collected security data for research experiments.

In recent research literature, limited budget and insufficient
scalability of SOC tools have been highlighted as major
challenges when implementing and running a SOC [5], [6],
[13]. For addressing these challenges, our SOC employs open-
source and free tools that have been combined in a scalable
way.

Our SIEM is based on a non-commercial installation of
Elastic Stack [14] which was chosen because of its popularity
as a log management and SIEM platform [15], [16]. In addi-
tion, other log management and SIEM platforms like Graylog
and Wazuh are relying on Elastic Stack technologies, most
notably the Elasticsearch database backend [17], [18]. Since



one of the SOC goals is to educate the student analysts, using
widely accepted technologies in SOC increases the future
value and usefulness of the knowledge the students obtain
during the learning process. Also, the Elasticsearch database
engine has a distributed nature and can be easily extended
from a single node installation to a cluster of many nodes,
allowing to scale it up for handling growing workloads.

B. Experiments for Evaluating SIEM Tools

This subsection presents performance experiments for find-
ing the most scalable deployment scenario for Elastic Stack
based SIEM. For collecting events from monitored nodes
to SIEM, two deployment scenarios have been suggested in
Elastic Stack documentation (see Fig. 1 and Fig. 2). In the
case of both scenarios, events originate from Beat agents [19]
that are lightweight data shippers for sending log file data
and other relevant data to SIEM. One of the most commonly
used Beat agents is Filebeat [20] which is able to track log
files in real time, sending events extracted from log files to a
configured destination.

Fig. 1. Standard implementation of Elastic Stack

In the case of the first scenario (see Fig. 1) [21], Beat
agents like Filebeat are sending security events from monitored
nodes directly to the Elasticsearch database, where events are
parsed by ingest pipelines and then stored in Elasticsearch
indices. Although access to a properly secured Elasticsearch
database requires authentication, allowing any remote node
from the organizational network to establish a TCP connection
to a database backend is not a good security practice [22].
For this reason, most security-aware organizations prevent
unrestricted access to database backends by network segmen-
tation, allowing network connections only from a few selected
nodes. Furthermore, sending events from Beat agents directly
to Elasticsearch does not allow for the creation of regular log
files on a central log server. However, compressed log files
consume much less disk space than Elasticsearch indices and
are more convenient for long term storage of log data.

For addressing these issues, Elastic Stack documentation
describes another deployment scenario that involves the use
of Logstash [23] event processing tool as a gateway between
Beat agents and Elasticsearch (see Fig. 2) [24]. Although
Logstash is able to write received events to regular log files,
Logstash is known to consume a lot of computing resources
and a widely used syslog server Rsyslog [25] has been found
to be the most efficient alternative [26], [27]. Since Logstash

Fig. 2. Elastic Stack implementation with Logstash

and Beat agents communicate with a proprietary Lumberjack
protocol, Beat agents cannot send events to Rsyslog directly,
but can be configured to communicate with Rsyslog via
Kafka or Redis messaging infrastructure. As an alternative,
Logstash gateways can be installed in organizational sub-
networks for local Beat agents, so that gateways are forwarding
events to Rsyslog over the syslog protocol. We have released
example configurations for Filebeat, Logstash, and Rsyslog at
https://github.com/ristov/elastic-examples, and these configu-
rations have also been used for the experiments outlined below.

First, experiments were conducted with Rsyslog and
Logstash to measure their resource consumption1. For the
workload, around 1,200 events per second during 3 hours
were generated in EVE (JSON) format by Suricata IDS [29]
in a production network. Performance tests were conducted
on a server with 24 logical CPUs (Intel Xeon E5-2630Lv2),
64GB of memory, and Linux operating system. Since the
server was manufactured in 2013, the test results reflect the
performance of evaluated solutions on commodity hardware.
Elastic Stack 7.16.3 and Rsyslog 8.2202.0 were installed on
the server, and for making Logstash more efficient according
to vendor recommendations [30], we configured it to use 4GB
of memory and write events to Elasticsearch by larger batches
of 500 events. During the experiments, the CPU utilization of
a running program was measured as follows:

CPU time used by program in seconds

program execution time in seconds
∗ 100% (1)

Note that the CPU utilization can exceed 100% if a multi-
threaded program has fully consumed the resources of more
than one CPU. According to our tests, the CPU utilization of
Rsyslog and Logstash was 23.9% and 48.4% respectively (see
the first data row in Table I), with the peak memory usage of
Rsyslog reaching 1.4GB.

TABLE I
CPU UTILIZATION OF RSYSLOG AND LOGSTASH

Additional parsing Rsyslog Logstash
no 23.9% 48.4%
yes 24.4% 58.1%

1Like Rsyslog, another widely used syslog server Syslog-ng can send events
to Elasticsearch. However, it has limited support for ingest pipelines which
prevents its use as a gateway between Beat agents and Elasticsearch [28], and
therefore we have not evaluated Syslog-ng during the experiments.



Quite often, the event parsing and enrichment done in
Elasticsearch ingest pipelines is not sufficient and events
require some additional preprocessing. For evaluating the cost
of additional event parsing for Logstash and Rsyslog, we
configured both tools to parse out source and destination
IP addresses from incoming Suricata IDS events, treating
the events in EVE format as flat strings. The tools were
also configured to create two additional fields based on the
values of source and destination IP addresses. In the case of
Logstash, event parsing was addressed with a grok filter, while
in the case of Rsyslog a liblognorm rule was used (grok and
liblognorm are standard event parsing measures of respective
tools). According to Table I, the CPU utilization of Logstash
increased by almost 10% (from 48.4% to 58.1%), while in
the case of Rsyslog the increase was marginal (from 23.9%
to 24.4%). These results are in line with findings by other
researchers who have reported a significant performance gap
between grok and liblognorm [26], [31]. Also, the performance
of liblognorm is much less influenced by the rulebase size
[26], [31]. For example, during an experiment described in
[31], increasing the liblognorm rulebase from 37 rules to 1,161
rules increased the CPU time consumption only by 20%.

One of the main advantages of Elastic Stack predefined
ingest pipelines is the parsing of events according to Elas-
tic Common Schema (ECS) which introduces specific field
names. Since Elastic Stack comes with many predefined event
correlation rules and dashboards that have been designed for
ECS, ingest pipelines help to prepare event data for these rules
and dashboards. However, although ingest pipelines exist for a
number of common event formats, there are many formats for
which pipelines are currently not provided by Elastic Stack.
Also, if the end user does not wish to use predefined event
correlation rules and dashboards but rather create a custom
setup, an ingest pipeline is not required, since event parsing
can be entirely delegated to Logstash or Rsyslog.

To assess the CPU consumption for event parsing with and
without an ingest pipeline, we measured the CPU utilization
of Elasticsearch under the workload of 2,000 EVE messages
per second from Suricata IDS during 3 hours, using Rsyslog
to write events to Elasticsearch. When a predefined ingest
pipeline for Suricata events was employed for parsing, the
CPU utilization of Elasticsearch reached 444.6%, and when
parsing was done by Rsyslog, Elasticsearch CPU utilization
dropped to 59.2% (in both cases, Rsyslog CPU utilization was
around 40%). Despite the pipeline offering some advantages
(e.g., GeoIP enrichment), parsing with Rsyslog reduced the
CPU consumption of Elasticsearch about 7.5 times. Also,
although Elastic Stack was deployed on commodity hardware,
the combined CPU utilization of Rsyslog and Elasticsearch
was about 100% (i.e., just 1 CPU out of 24 was fully loaded).

The experiment results from this subsection illustrate that
combining Rsyslog with Elastic Stack allows to considerably
decrease the resource consumption and increase the system
scalability. These considerations are particularly important
when Elastic Stack based SIEM has to be deployed as a single
node installation or on nodes with limited computing power.

C. SOC Tools and Architecture

The SOC architecture is depicted in Fig. 3. For the sake
of cost-efficiency, the SIEM and other SOC tools have been
deployed on virtual machines, unless the tool vendor recom-
mends the use of physical machines for high-performance se-
tups (e.g., see [32]). The SIEM employs Elasticsearch backend
and Kibana visualization interface. For performance reasons,
Elasticsearch data nodes are running on bare-metal servers
with large SSD disks, with data being replicated over several
nodes for fault tolerance.

According to experiment results from the previous subsec-
tion, Rsyslog is utilized as the main tool for parsing and
storing events into Elasticsearch, with about 0.1% of events
being directed to Logstash for more complex and expensive
parsing. For collecting security events, syslog protocol is used
which is supported by all network devices and servers in
the organizational network, and also allows to collect events
from Beat agents via Logstash gateways. Events are collected
over encrypted and authenticated network connections (e.g.,
using TLS-based syslog protocol [33], apart from few network
devices which don’t support this functionality). Events are
received with Syslog-ng [34] which is used for creating regular
log files and for elaborate event preprocessing. Syslog-ng
supports advanced event rewriting rules that employ Perl-
Compatible Regular Expressions, and we use these rules for
some complex event normalization and modification tasks
(e.g., removing sensitive data from events that are used during
academic research experiments in real-time).

One important SIEM tool is the event correlation engine
[35]. Elastic Stack has its own security event correlation
engine that comes with over 600 deactivated rule examples for
correlating events from many different applications and other
sources. The engine is featuring Event Query Language (EQL)
for detecting event sequences by frequent database queries
(e.g., executed once a minute). This batch processing based
event correlation technique has one significant drawback –
when the number of rules increases and they involve complex
database queries that search events from larger time frames,
it can impose a significant load on the database. Because of
this limitation, vast majority of 600+ example rules involve
small time frames for searching event sequences or no time
frames at all (e.g., we found only 5 rule examples using a time
frame larger than 5 minutes). Also, generating output notifi-
cations from Elastic Stack event correlation engine requires a
commercial license which is another serious limitation.

For these reasons, our SOC employs Simple Event Cor-
relator (SEC) [36] for more demanding event correlation
tasks. Unlike Elastic Stack native event correlator, SEC em-
ploys the stream processing paradigm that involves immediate
correlation of incoming events with the help of compact
memory based data structures representing information about
past events. A single SEC instance can handle hundreds of
events per second while consuming a small amount of CPU
time [36], and since SEC memory footprint is very modest
(typically about 20–30MB), it is straightforward to run several



Fig. 3. SOC architecture

instances on the same machine if parallel processing is needed.
Also, we have found the functionality of EQL quite limited
when compared to the SEC rule language, and the use of SEC
has allowed for implementing more complex event correlation
schemes without imposing any load to Elasticsearch database.

As for nodes that send data to Elastic Stack based SIEM,
we are following the shared responsibility model suggested
in [3] – dedicated monitoring devices like network IDS are
controlled by SOC staff, while other nodes are managed
by personnel outside SOC. We employ Suricata IDS as our
primary open-source network monitoring tool. Suricata was
selected because of its scalable multi-threading based architec-
ture and ability to cope with high network loads that exceed
10 Gbit/s on regular server hardware [37]. Suricata appliances
have been configured to use Emerging Threats signatures and
in addition to IDS alerts, they also produce events about
observed network flows and application layer transactions
(e.g., DNS queries and responses).

The SIEM is also collecting security events from regular
computing infrastructure such as next generation firewalls
that implement IPS functionality, network devices, host-based
security management and IDS modules, etc.

D. People and Processes

A SOC organization usually comprises the following roles –
SOC analysts (e.g., arranged into two or three tiers), security
experts (e.g., malware analysts), and the SOC manager [1],
[35]. Our SOC employs 2–3 student volunteers as Tier 1
analysts. All the other SOC roles are fulfilled by 3–4 regu-
lar employees (according to a recent study [4], majority of
organizations have 2–5 analyst positions). The work of Tier 1
student analysts is not remunerated, but they receive academic
credit points for one semester of work. This arrangement not

only reduces the SOC personnel costs, but also allows to use
the SOC for teaching purposes.

In recent literature, insufficient training, monotonous work
and alert fatigue that can lead to burnout, insufficient shar-
ing of domain knowledge about IT environment and assets
between experts and analysts, and limited knowledge sharing
and collaboration between SOC staff have been identified as
analyst related challenges [1], [5], [6]. For addressing these
issues, the students are recruited from cyber security master’s
program of TalTech which offers a number of highly technical
courses and training relevant to analyst work. Also, student
analysts are rotated after every semester for preventing analyst
burnout.

For knowledge transfer, students from the previous semester
train the new analysts during a 2–3 weeks long handover
period. In addition, the analysts and experts are maintaining
a Wiki based knowledge repository which includes documen-
tation and usage tips for SOC tools, past daily and weekly
reports with details about alert analysis, and information
about IT assets. Finally, for facilitating cooperation and timely
communication between SOC staff, an MS Teams channel is
maintained.

Other challenges related to SOC and its staff are proper
handling of sensitive data, the need for relevant privacy
regulations, security awareness of the SOC staff, and the
need for properly securing the SOC environment [1], [2].
For addressing these challenges, new analysts go through
security briefings during the recruitment process. During the
briefings, the rules for handling sensitive data and using the
SOC environment are explained. For example, the rules do not
allow copying any SOC data to external media or outside the
SOC environment, and the use of personal devices in SOC
environment is prohibited. After the briefings, new analysts



sign a Non-Disclosure Agreement (NDA) that describes these
rules (similar NDAs are signed by researchers who wish to use
the SOC data for academic research projects). Finally, the SOC
environment resides in dedicated networks that are separated
from rest of the campus network, and physical access to the
SOC analyst room is limited.

One of the most important SOC work processes is the alert
handling process [1]. During this process, alerts are prioritized
by Tier 1 analysts, with high-priority alerts being investigated
first. Depending on the alert impact, Tier 1 analysts will
contact Tier 2+ analysts and security experts for further anal-
ysis and response. As an important part of the alert handling
process in our SOC, the results of the analysis are documented
in the Wiki based knowledge repository. Daily and weekly
reports are another major deliverable from Tier 1 analysts that
are also stored in the knowledge repository.

Insufficient level of automation in the alert handling process
has been identified as a major issue that causes alert fatigue
and demotivates the analysts [1], [6]. As discussed in section
II, machine learning approaches have been suggested for im-
proving automation. Unfortunately, implementations of most
approaches have either not been tested over longer periods of
time in production environments or are not publicly available.
For example, from machine learning approaches discussed in
section II, none have publicly available implementations, and
only one is actually used in an organizational SOC [7].

In our environment, handling IDS alerts from the external
network perimeter is the most challenging issue, since about
200,000 alerts are triggered each day (typically, there are less
than 100 alerts of other types per day, and they can be easily
handled by analysts). For addressing this problem, we have
created an open-source tool called SCAS which implements
an unsupervised stream clustering algorithm for automated
prioritization of IDS alerts [38].

SCAS processes alerts in real time and first arranges them
into alert groups, where each group represents alerts for the
same external host observed during a short time frame (e.g.,
5 minutes). Alert groups are then clustered, so that groups
belonging to clusters match frequently occurring IDS alert
patterns representing threats of low importance. Also, unusual
alert groups are classified as outliers. Finally, a similarity score
from range 0..1 is calculated for each alert group assigned to
a cluster which reflects the similarity between the group and
its cluster centroid (outliers are receiving the score of -1).
Alert groups with lower similarity scores are thus outliers or
dissimilar to their cluster centroids, deserving closer attention.

SCAS does not require any human interaction and is able
to compress and filter out large IDS alert volumes of low
importance. For example, in January – February 2022 SCAS
reduced 11,484,738 IDS alerts to 71,033 IDS alert groups of
higher importance (i.e., the number of events that required
inspection was reduced by more than 99%).

For the automation of other IDS alert analysis tasks (e.g.,
the identification of aggressive attackers who trigger many
alerts during short time frames), SEC event correlation rules
are employed.

IV. CONCLUSION AND FUTURE WORK

This paper describes a cost-efficient production SOC that
operates in a large academic institution, and also provides
detailed technical recommendations on how to use open-source
and free tools for building a low-cost and scalable SIEM
solution for a SOC.

As for future work, we plan to continue research on un-
supervised machine learning and active learning algorithms
for automated classification and prioritization of SOC alerts.
We also plan to study the human aspects in SOC, e.g., the
efficiency of knowledge transfer from experienced analysts to
newcomers and methods for improving it.

ACKNOWLEDGMENT

The authors express their gratitude to Mr. Priit Pennula,
Prof. Rain Ottis and Prof. Olaf M. Maennel for their support.

REFERENCES

[1] M. Vielberth, F. Böhm, I. Fichtinger, and G. Pernul, “Security operations
center: A systematic study and open challenges,” IEEE Access, vol. 8,
pp. 227 756–227 779, 2020.

[2] F. D. János and N. H. P. Dai, “Security concerns towards security
operations centers,” in 2018 IEEE 12th International Symposium on
Applied Computational Intelligence and Informatics (SACI). IEEE,
2018, pp. 000 273–000 278.

[3] S. G. Radu, “Comparative analysis of security operations centre ar-
chitectures; proposals and architectural considerations for frameworks
and operating models,” in International Conference for Information
Technology and Communications. Springer, 2016, pp. 248–260.

[4] C. Crowley and J. Pescatore, “Common and best practices for security
operations centers: Results of the 2019 soc survey,” SANS, Bethesda,
MD, USA, Tech. Rep, 2019.

[5] F. B. Kokulu, A. Soneji, T. Bao, Y. Shoshitaishvili, Z. Zhao, A. Doupé,
and G.-J. Ahn, “Matched and mismatched socs: A qualitative study
on security operations center issues,” in Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security, 2019,
pp. 1955–1970.

[6] D. Weissman and A. Jayasumana, “Integrating iot monitoring for
security operation center,” in 2020 Global Internet of Things Summit
(GIoTS). IEEE, 2020, pp. 1–6.

[7] C. Feng, S. Wu, and N. Liu, “A user-centric machine learning frame-
work for cyber security operations center,” in 2017 IEEE International
Conference on Intelligence and Security Informatics (ISI). IEEE, 2017,
pp. 173–175.

[8] P. Bienias, G. Kołaczek, and A. Warzyński, “Architecture of anomaly
detection module for the security operations center,” in 2019 IEEE 28th
International Conference on Enabling Technologies: Infrastructure for
Collaborative Enterprises (WETICE). IEEE, 2019, pp. 126–131.

[9] N. Gupta, I. Traore, and P. M. F. de Quinan, “Automated event
prioritization for security operation center using deep learning,” in 2019
IEEE International Conference on Big Data (Big Data). IEEE, 2019,
pp. 5864–5872.

[10] P. Najafi, A. Mühle, W. Pünter, F. Cheng, and C. Meinel, “Malrank:
a measure of maliciousness in siem-based knowledge graphs,” in Pro-
ceedings of the 35th Annual Computer Security Applications Conference,
2019, pp. 417–429.

[11] K. Demertzis, P. Kikiras, N. Tziritas, S. L. Sanchez, and L. Iliadis,
“The next generation cognitive security operations center: network flow
forensics using cybersecurity intelligence,” Big Data and Cognitive
Computing, vol. 2, no. 4, p. 35, 2018.

[12] B. A. Alahmadi, L. Axon, and I. Martinovic, “99% false positives:
A qualitative study of soc analysts’ perspectives on security alarms,”
in Proceedings of the 31st USENIX Security Symposium (USENIX
Security), Boston, MA, USA, 2022, pp. 1–18.

[13] R. de Céspedes III and G. Dimitoglou, “Development of a virtualized
security operations center,” Journal of Computing Sciences in Colleges,
vol. 37, no. 3, pp. 108–119, 2021.



[14] “Elastic stack,” Elastic Stack home page. [Online]. Available:
https://www.elastic.co/elastic-stack/

[15] K. M. Kavanagh, T. Bussa, and J. Collins, “Gartner magic quadrant for
security information and event management,” Gartner Inc, 2021.

[16] D. Horovits, “The complete guide to the ELK stack,” Jun. 9, 2020.
[Online]. Available: https://logz.io/learn/complete-guide-elk-stack/

[17] “Graylog - industry leading log management.” [Online]. Available:
https://www.graylog.org

[18] “Wazuh - the open source security platform.” [Online]. Available:
https://wazuh.com

[19] “Beats,” Beats home page. [Online]. Available:
https://www.elastic.co/beats/

[20] “Filebeat,” Filebeat home page. [Online]. Available:
https://www.elastic.co/beats/filebeat

[21] “Configure the elasticsearch output,” File-
beat documentation. [Online]. Available:
https://www.elastic.co/guide/en/beats/filebeat/current/elasticsearch-
output.html

[22] “Database security cheat sheet,” OWASP Cheat Sheet Series.
[Online]. Available: https://cheatsheetseries.owasp.org/cheatsheets/
Database Security Cheat Sheet.html

[23] “Logstash,” Logstash home page. [Online]. Available:
https://www.elastic.co/logstash/

[24] “Configure the logstash output,” File-
beat documentation. [Online]. Available:
https://www.elastic.co/guide/en/beats/filebeat/current/logstash-
output.html

[25] “Rsyslog,” Rsyslog home page. [Online]. Available:
https://www.rsyslog.com

[26] R. Gheorghe, “5 logstash alternatives (2022 compari-
son),” Sematext Blog, Jan. 4, 2022. [Online]. Available:
https://sematext.com/blog/logstash-alternatives/

[27] R. Vaarandi and P. Niziński, “Comparative analysis of open-source log
management solutions for security monitoring and network forensics,”
in Proceedings of the 2013 European conference on information warfare
and security, 2013, pp. 278–287.

[28] “A question about the elasticsearch-http driver,” Syslog-ng mailing list.
[Online]. Available: https://lists.balabit.hu/pipermail/syslog-ng/2022-
March/026409.html

[29] “Suricata,” Suricata home page. [Online]. Available: https://suricata.io
[30] “Logstash performance tuning,” Logstash documentation. [Online].

Available: https://www.elastic.co/guide/en/logstash/7.16/performance-
tuning.html

[31] R. Gerhards, “Efficient normalization of it log messages under realtime
conditions,” 2016.

[32] “High performance configuration,” Suricata documenta-
tion. [Online]. Available: https://suricata.readthedocs.io/en/suricata-
6.0.5/performance/high-performance-config.html

[33] F. Miao, Y. Ma, and J. Salowey, “Rfc5425: Transport layer security
(tls) transport mapping for syslog,” Mar. 2009. [Online]. Available:
https://datatracker.ietf.org/doc/html/rfc5425

[34] “Syslog-ng,” Syslog-ng home page. [Online]. Available:
https://www.syslog-ng.com

[35] C. Zimmerman, “Ten strategies of a world-class cybersecurity operations
centre. the mitre corporation,” 2014.

[36] R. Vaarandi, B. Blumbergs, and E. Çalışkan, “Simple event correlator
- best practices for creating scalable configurations,” in 2015 IEEE
International Multi-Disciplinary Conference on Cognitive Methods in
Situation Awareness and Decision Support. IEEE, 2015, pp. 96–100.

[37] T. Appel, “Pushing suricata towards 80Gbps and more,”
Oct. 30, 2019. [Online]. Available: https://suricon.net/wp-
content/uploads/2019/11/SURICON2019 Pushing-Suricata-Towards-
90-Gbit s-and-More.pdf

[38] R. Vaarandi, “A stream clustering algorithm for classifying network ids
alerts,” in 2021 IEEE International Conference on Cyber Security and
Resilience (CSR). IEEE, 2021, pp. 14–19.


