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Abstract: During the last two decades, cyber attacks against end users have grown significantly both in terms 
of number and sophistication. Unfortunately, traditional signature-based technologies such as network IDS/IPS 
and next generation firewalls are able to detect known attacks only, while new attack types not matching any 
signatures remain unnoticed. Therefore, the use of machine learning for detecting anomalous network traffic 
of end user nodes has become an important research problem. In this paper, we present a novel NetFlow 
based framework for identifying anomalous end user nodes and their network traffic patterns, and describe 
experiments for evaluating framework performance in an organizational network. 
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1. Introduction 

For protecting workstations and laptops in corporate networks, security-aware organizations are employing 
specialized technologies like gateways for filtering web and e-mail traffic. Also, for lessening the risk of 
infection, end user nodes are often centrally managed, with unmanaged computers being blocked from 
connecting to corporate network. Unfortunately, many smaller organizations are using simple NAT firewalls 
that do not support any filtering of malicious application layer traffic. According to recent report by Symantec 
(2019), employees of smaller institutions are more likely to be hit by e-mail threats. Also, many organizations 
have no centralized patching routines and have adopted bring-your-own-device policy which makes their end 
user nodes much more vulnerable. This problem is exacerbated by insufficient cyber security awareness and 
lack of relevant training (SANS, 2018). 
 
After an end user node has been infected, attackers can harness it for various purposes like compromising 
other devices in private network, launching attacks against other organizations, etc. For detecting such 
activities, network IDS is often used. Since most network IDS are signature based and thus able to identify 
previously known malicious traffic patterns only, a number of NetFlow based anomaly detection algorithms 
have been suggested in recent papers. However, apart from few exceptions (e.g., (Grill et al, 2015)), most 
previously suggested methods have not focused on detection of anomalous end user nodes in organizational 
networks. Furthermore, many methods can only raise an alarm about anomaly for some node or network 
segment without the ability to highlight malicious traffic patterns. Nevertheless, providing such information to 
network administrators would significantly reduce incident resolution time (Zhou et al, 2015). Finally, only few 
works have considered the use of multiple classifiers for anomaly detection from NetFlow data (Hou et al, 
2018). 
 
This paper addresses above research gaps and presents an unsupervised framework for detecting anomalous 
end user nodes in organizational networks. The framework employs several anomaly detectors for finding a 
total anomaly score for each node in hourly time windows, and uses LogCluster algorithm for finding network 
traffic patterns for anomalous nodes from NetFlow data. We have evaluated the framework during 5 months 
in a network of an academic institution. The remainder of this paper is organized as follows – section 2 
discusses related work, section 3 presents our framework, section 4 describes performance evaluation of the 
framework, and section 5 outlines future work. 
 

2. Related Work 

Cisco NetFlow is a protocol which defines flow as a sequence of packets that share a number of common 
properties, most notably the source IP address, source port, destination IP address, destination port, and 
transport protocol. For monitoring network traffic, NetFlow exporter maintains a record for each flow in a 
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memory-based cache, with the record holding counters for packets and bytes in the flow, the union of all 
observed TCP flags, start and end time of the flow, and other data. NetFlow exporter sends a flow record to 
NetFlow collector when some flow-based timer expires (e.g., no packets have been seen during 60 seconds), 
when the flow ends (e.g., TCP connection is closed), or when flow cache becomes full. Many modern network 
devices can act as NetFlow exporters, and there are many commercial and open-source NetFlow exporter and 
collector implementations (Hofstede et al, 2014). Also, a number of approaches have been suggested for 
anomaly detection from NetFlow data. 
 
Brauckhoff et al (2012) have proposed an algorithm where histograms are built from flow features (e.g., source 
port) during measurement intervals, where each histogram represents a flow feature distribution. At the end 
of each interval, Kullback-Leibler distance between distributions for current and previous interval is calculated. 
If the distance exceeds a threshold, alarm is raised and Apriori frequent itemset mining algorithm is used for 
mining patterns from suspicious flow records. Kind, Stoecklin and Dimitropoulos (2009) have described a 
supervised method where the training phase involves building histograms and clustering similar histograms 
together, in order to create models of normal behavior. For anomaly detection, a vector is computed that 
encodes online network behavior, and a distance of the vector from clusters is calculated. 
 
Grill et al (2015) have suggested a method for discovering hosts with domain generation algorithm (DGA) 
based malware by measuring the ratio of DNS requests to the number of unique IP addresses contacted by the 
host. According to experiments, the ratio is high for infected hosts. Our past work (Vaarandi, 2013) proposes 
two unsupervised anomaly detection algorithms for organizational private networks. The first algorithm 
maintains behavior profile for each node which describes recently used services, and raises an alarm if the 
node connects to unusual service. The second algorithm clusters nodes on daily basis, in order to find node 
groups that consistently use the same services, and raises an alarm if node behavior deviates from the rest of 
the group. Muhs et al (2018) have developed a method for detecting P2P botnets which creates a 
communication graph from NetFlow data. Each graph node represents a host and each graph edge a 
probability of communication between relevant hosts. The method conducts a large number of random walks 
(traversals over k nodes), and calculates the probability of reaching each end node. Resulting probability 
distribution is then clustered with Density-Based Spatial Clustering of Applications with Noise (DBSCAN) 
algorithm (Ester et al, 1996), and according to authors, P2P bots form dense clusters. 
 
Hofstede et al (2013) have proposed exponentially weighted moving average (EWMA) based algorithm for 
DDoS detection which tracks the number of flows. If unexpected change in the number of flows is detected, 
the algorithm can create firewall rules for blocking malicious traffic. Hou et al (2018) have suggested random 
forest classifiers for DDoS detection, and have found their performance superior to C4.5, SVM, and Adaboost 
classifiers. Paredes-Oliva et al (2012) have proposed a supervised algorithm which first identifies traffic 
patterns with FPmax frequent itemset mining algorithm, and then uses C5.0 classifier for finding anomalous 
patterns. Finally, Zhou et al (2015) have developed ENTvis tool which divides NetFlow data into timeframes, 
and for each timeframe calculates entropies for source IP, source port, destination IP and destination port. 
This information is then visualized with several techniques (e.g., visual clustering) which allows human analysts 
to spot anomalies and understand their nature. 
 

3. Framework for Detecting Anomalous End User Nodes 

3.1 Overview of Anomaly Detection Framework 

If an end user node communicates with some port at remote node, we define peer as a tuple (transport 
protocol ID, IP address of remote node, port number at remote node). Also, peer port is defined as a tuple 
(transport protocol ID, port number at remote node). For protocols without ports (e.g., ICMP), 0 is used for 
remote port number.  

 

For studying typical network usage patterns of end user nodes, we analyzed a 1-month NetFlow data set for 78 
workstations. We divided this data set into 1 hour timeframes and investigated how many peers and peer 
ports each node had accessed during hourly timeframes of its activity. Firstly, total numbers of peers for the 
entire month remained relatively modest, and an average node accessed 1213.2 peers (largest number of 
peers per node was 4688).  



 
 

 

Secondly, significant part of the flows were associated with a small fraction of frequently used peers (see Table 
1). For example, an average node contacted only 51.7 peers during at least half of its activity hours, but 69.9% 
of flows were associated with these peers. 

 

 

Table 1: Network usage patterns of end user nodes 

 

N Number of peers contacted during at least N% 
of hourly timeframes when node was active 
(average over all nodes) 

Fraction of flows associated with peers (average 
over all nodes) 

10 292.6 92.4% 

25 145.9 83.4% 

50 51.7 69.9% 

 

 

Also, we discovered similar trends for peer ports – for example, an average node contacted 8.9 peer ports 
during at least half of its activity hours, and 96.6% of flows were associated with these peer ports. Finally, we 
have observed similar regularities for NetFlow data sets collected in different environments (Vaarandi, 2013). 

 

These findings suggest that if a new flow is observed for an end user node, it is likely that the flow is associated 
with a peer and peer port the node has already accessed in recent past. In other words, recent communication 
patterns of end user node can be harnessed for predicting its future behavior, and we have developed an 
anomaly detection framework which relies on that assumption (see Figure 1). 

 

 

 
 
Figure 1: Overview of the framework 
 
The framework executes once in every hour on NetFlow collector node, and processes the flows of last 60 
minutes for each end user node. If the node has no flows, it will be skipped due to its inactivity. The framework 



 
 

consists of three anomaly detectors which calculate anomaly scores score1, score2 and score3 from range 0..1 
for a node. The scores are aggregated into total anomaly score score1*w1 + score2*w2 + score3*w3 with non-
negative weights w1, w2 and w3, where w1 + w2 + w3 = 1 (therefore, total anomaly score ranges from 0 to 1). If 
node’s total anomaly score exceeds a given threshold, an alarm is raised and flows of that node for the last 60 
minutes are mined with LogCluster algorithm, in order to identify anomalous network traffic patterns 
(LogCluster is known to be well suited for analyzing security logs (Vaarandi, Kont and Pihelgas, 2016)). The 
following subsections provide a detailed discussion of each anomaly detector from Figure 1. 
 

3.2 EWMA Based Anomaly Detector 

Since it has been shown that EWMA based anomaly detection methods are efficient for network traffic 
analysis (Hofstede et al, 2013), one of anomaly detectors employs a similar approach. If X = {x1,x2,...} is a time 
series, EWMA µ and exponentially weighted moving standard deviation σ are calculated according to Equation 
1. 

 

 

 
Equation 1: Exponentially weighted moving average and standard deviation 
 
In Equation 1, α ranges from 0 to 1, with larger values of α giving more weight to recent observations of X. 
Values close to 0 are distributing weight more evenly, and EWMA is known to estimate the average of last 
(2/α)-1 values from X. For detecting anomalies for time series X, the following method is often used:  
if |xi −µi−1| > m∗σi−1, then xi is regarded anomalous (m is a user defined constant and commonly set to 3). 
 
The above approach has motivated EWMA based anomaly detector for identifying unexpected increases in the 
number of peers and peer ports, and the volume of traffic exchanged with peers (according to section 3.1, end 
user nodes communicate with modest number of peers). For each node E, the anomaly detector tracks the 
following six features: 
 

 Peers – number of unique peers for node E per 1 hour 

 RarePeers – number of unique peers for node E per 1 hour, so that E has not communicated with 
these peers during the last N hours of its activity (during our experiments, we have set N = 50) 

 PeerPorts – number of unique peer ports for node E per 1 hour 

 LogFlows – log10M, where M is the number of flows for node E per 1 hour 

 LogPackets – log10M, where M is the number of packets sent and received by node E per 1 hour 

 LogBytes – log10M, where M is the number of bytes sent and received by node E per 1 hour 
 
The anomaly detector raises an alarm for any of above features if xi−µi−1 > m∗σi−1, i.e., the value of a feature 
increases significantly. We have employed the settings m = 3 and α = 0.05 for anomaly detector, and with 
α=0.05, µi−1 estimates the average feature value over previous 39 hours (that is the approximate working week 
length for end users, and end user nodes are often switched off outside office hours). The purpose of the 
RarePeers feature is to detect unexpected increase of the number of unusual peers, even if the overall number 
of peers stays within expected boundaries. Also, instead of tracking the number of flows, packets, and bytes, 
these values have been converted to logarithmic scale for lessening the number of false positives. Finally, each 
feature contributes equally to the anomaly score reported by the detector. For example, if for node E alarms 
have been raised for RarePeers and LogFlows features, anomaly score 1/3 will be reported for node E. 
 

3.3 Clustering Based Anomaly Detector 

Unfortunately, EWMA based anomaly detector is not aware of the surrounding context which might influence 
the severity of detected anomalies. For example, while downloading unusually large amount of data is an 
anomaly if observed for one node only, the same simultaneous behavior change by many nodes can have a 



 
 

benign root cause (e.g., centralized patching of all workstations). The purpose of the clustering based anomaly 
detector is to find groups of similarly behaving nodes and report outliers as anomalous. 
 
For clustering purposes, each node is represented by a vector with the following attributes – the number of 
peers, rare peers, and peer ports (defined like Peers, RarePeers, and PeerPorts features in the previous 
section); total number of bytes, packets, and flows; total number of bytes and packets for outgoing traffic; 
total number of bytes and packets for incoming traffic. Before clustering, all features are standardized by 
removing the mean and scaling to unit variance. For clustering the nodes, DBSCAN algorithm (Ester et al, 1996) 
is used which takes minPts and ε input parameters.  
 
DBSCAN regards data point as core point if it has at least minPts points (including itself) within distance ε (we 
have used Euclidean distance for anomaly detector). A point q is reachable from core point p if either: (1) q is 
within distance ε from p, or (2) there exist core points p1,...,pk, so that: 
 

 p1 = p,  

 pi is within distance ε from pi−1 (1 < i ≤ k),  

 q is within distance ε from pk.  
 
If p is a core point, DBSCAN creates a cluster from p and all points that are reachable from it (therefore, each 
cluster will contain at least minPts points). Points that are not reachable from any other point are regarded 
outliers. 
 
For favoring the creation of larger clusters with many nodes, the anomaly detector executes DBSCAN with 
settings minPts = 10 and ε = 5. For nodes belonging to clusters, anomaly score 0 is returned. Also, if there are k 
outliers among n nodes, anomaly score 1-(k/n) is returned for each outlier node. Therefore, if there are only 
few outlier nodes, their anomaly scores are close to 1, while with many outliers (i.e., when anomalous 
behavior is more common) their anomaly scores will be significantly lower. 
 

3.4 Sketch Based Anomaly Detector 

Unlike two previous anomaly detectors that are based on well-known algorithms, this subsection presents a 
novel anomaly detector which employs one-row sketches for summarizing past communication patterns of 
each end user node, in order to predict its future behavior. The anomaly detector has three components with 
the following goals: 
 

 Similarity and entropy based anomaly detection for peers 

 Similarity and entropy based anomaly detection for peer ports 

 Entropy based anomaly detection for local ports 
 

Each component can raise an alarm which will contribute equally to node’s anomaly score (e.g., if two 
components raise an alarm for a node, its anomaly score is 2/3). The following paragraphs will outline the work 
of the first peer-related component for node E (the second component works similarly, and the third will be 
described in the end of this section). 

 

The anomaly detector will start its work with two sketches S = (s1,...,sn) and V = (v1,...,vn) which are vectors of n 
counters (we have set n = 100000 for peers, and n = 10000 for peer ports and local ports). The purpose of 
vector S is to capture recent average communication patterns with peers for E, while V captures this 
information for the last hour.  
 
When anomaly detector is executed for the flows of E from last 60 minutes, counters of vector V are initialized 
to zero and updated in the following way:  
 

1. for each flow, a peer is extracted and hashed into a value from range 1..n, 
2. if the value is k, counter vk is incremented.  

 



 
 

If V1,V2,... denote above hourly vectors in the order of creation, and vji denotes the ith counter of vector Vj, the 
ith counter of vector S is maintained as an EWMA for time series {v1i,v2i,...} (see Equation 1). In other words, 
each subsequently calculated vector V = (v1,...,vn) is used for updating S = (s1,...,sn) according to Equation 2. 
 
 

 
 
Equation 2: Vector update procedure 
 
Therefore, counter vi is equal to the number of flows during the last hour for a group of one or more peers, 
while counter si estimates the average number of flows during last (2/α)-1 hours for the same peer group. 
Thus, vectors S and V represent distributions of flows over peer groups. Since vector S reflects recent 
communication patterns with peers that serve as a good predictor for the future behavior of the node (see 
section 3.1), significant difference between vectors S and V can be regarded as an anomaly.  
 
For measuring the difference between two vectors, we experimented with several distance functions and 
discovered that cosine similarity produces best results (see Equation 3). 
 
 

 
 
Equation 3: Cosine similarity 
 
Cosine similarity measures the angle between two vectors, and ranges from 0 to 1 since counters of S and V 
are non-negative. If cosim(S,V) = 1, vectors S and V have the same direction (e.g., vectors (1,0,23,0) and 
(2,0,46,0)), and if cosim(S,V) = 0, vectors are orthogonal. Therefore, values close to 1 indicate that during the 
last 60 minutes distribution of flows over peer groups is similar to distribution of previous observations, while 
smaller values of cosine similarity indicate deviations from past measurements. 
 
The use of cosine similarity introduces the following issue – if node behavior changes frequently and has no 
clear baseline, similarity between S and V remains low and becomes meaningless for anomaly detection. For 
avoiding false alarms for such nodes, the anomaly detector calculates the similarity cosim(S,V) before each 
update of S with Equation 2, and maintains EWMA cavg for past similarity values according to Equation 1. 
Before each update of cavg with current similarity value cosim(S,V), anomaly detector raises an alarm only if 
cosim(S,V) < Tsim and cavg > Tavg. In other words, alarm is generated if similarity between S and V falls below 
threshold Tsim, with average past similarity cavg being sufficiently high and exceeding Tavg (we have used the 
settings α = 0.05, Tsim = 0.5 and Tavg = 0.8 for anomaly detector). 
 
In addition, we have also implemented entropy based anomaly detection for vector S, in order to identify 
nodes with constantly changing behavior (since cavg is usually smaller than threshold Tavg for such nodes, 
similarity based anomaly detection tends to be disabled for them). According to section 3.1, end user nodes 
are mostly communicating with relatively small number of peers which results in relatively few counters of 
vector S having larger values, while many counter values remain zero. On the other hand, if node behavior is 
frequently changing, counter values in S would be less different. In previous research papers, entropy based 
techniques have been successfully used for capturing such regularities (Zhou et al, 2015). 
 
If X is a discrete random variable that can take k values with probabilities p1,…,pk (p1+…+pk = 1), normalized 
information entropy of X is defined by Equation 4. 
 
 

 
 
Equation 4: Normalized information entropy 



 
 

 
Note that norment(X) ranges from 0 to 1, with values close to 1 indicating that distribution of X is close to 
uniform. Also, smaller values indicate that X takes some values with significantly higher probabilities. In order 
to employ entropy based anomaly detection for S, we first find its normalized vector Ŝ = (1/j) ∗ S, where j = 
s1+…+sn (note that ŝ1+…+ŝn = 1). After that, the entropy of S is calculated according to Equation 5. 
 
 

 
 
Equation 5: Calculating sketch entropy 
 
The anomaly detector calculates the entropy of S after each update with Equation 2, and raises an alarm if 
entropy is higher than Tent (for peers and peer ports, we have set Tent to 0.5 and 0.3 respectively). Finally, since 
typical end user nodes do not use fixed local ports for communicating with remote services but ports are 
selected randomly, the anomaly detector also maintains vector S for local ports of each end user node. Since S 
is expected to have a high entropy, the anomaly detector raises an alarm if the entropy falls below Tent2 (we 
have set Tent2 to 0.2 during experiments). 
 

3.5 Mining Flow Patterns with LogCluster 

If node’s total anomaly score for last 60 minutes exceeds a given threshold, flows of last 60 minutes for this 
node are mined with LogCluster algorithm, in order to detect prominent traffic patterns that capture the 
nature of anomaly. Since LogCluster is designed for mining textual log files, each binary flow record is 
converted into a textual line with the following keyword-value based format: proto <transport protocol ID> 
srcip <source IP address> srcport <source port> dstip <destination IP address> dstport <destination port> 
tcpflags <flagstring>. For easing the conversion process, we have used Perl based LogCluster implementation 
with advanced input preprocessing features (https://ristov.github.io/logcluster/). 

 
For detecting patterns from log file with LogCluster, the user has to specify support threshold value which 
ranges from 1 to n, where n is the number of lines in the log file. If support threshold is s, LogCluster identifies 
patterns that match at least s lines in the log file. During the first pass over the data set, LogCluster will split 
each line into words, and identify frequent words in the data set (words which appear in at least s lines). 
During the second data pass, LogCluster extracts all frequent words from each line, so that the combination of 
frequent words identifies a cluster candidate for the given line. For each cluster candidate, LogCluster 
memorizes the number of lines for this candidate, and summary information about the location of infrequent 
words for all lines of the candidate. After the data pass, cluster candidates with at least s lines are selected as 
clusters, and reported to the end user as line patterns. For example, the following pattern represents DNS 
queries from node 10.3.7.22 to server 192.168.1.1 port 53/UDP (note that *{1,1} is a wildcard which matches 
exactly one word):  
 
proto 17 srcip 10.3.7.22 srcport *{1,1} dstip 192.168.1.1 dstport 53 tcpflags NA  
 
As discussed in (Vaarandi, Blumbergs and Kont, 2018), finding a good support threshold value for LogCluster is 
a non-trivial issue. However, we have discovered that if NetFlow data set contains n flow records, support 
threshold value √n ̅allows to adequately highlight the nature of anomalous traffic in most cases. Also, we have 
configured LogCluster to use word weight based heuristics for joining patterns with the same nature (Vaarandi, 
Kont and Pihelgas, 2016). For example, in the case of two similar patterns that reflect DNS queries from 
10.1.1.1 to servers 192.168.1.1 and 192.168.1.2, LogCluster would join them into the following single pattern: 
 
proto 17 srcip 10.1.1.1 srcport *{1,1} dstip (192.168.1.1|192.168.1.2) dstport 53 tcpflags NA. 
 



 
 

4. Evaluation 

We have implemented our anomaly detection framework in Perl and Python, and measured its performance 
during 5 months (October 2018 – February 2019, 151 days) in a network of an academic institution with over 
200 workstations and laptops. The framework used softflowd NetFlow exporter 
(https://code.google.com/archive/p/softflowd/) on a dedicated Linux host for monitoring Internet traffic of all 
end user nodes without sampling, and flow data was collected with nfdump NetFlow collector 
(https://github.com/phaag/nfdump). 

 
When evaluating the framework, we used each anomaly detector with an equal weight of 1/3 and set anomaly 
score threshold to 0.5 (see Figure 1). During 5 months, the framework generated 1026 alarms about 33 end 
user nodes. However, over 90% of alarms were triggered for 4 hosts, and for 25 hosts only 1-3 alarms were 
raised. Figure 2 depicts some anomalous traffic patterns the framework discovered with LogCluster.  
 
 

 
 
Figure 2: Flow patterns for anomalous network traffic 
 
When investigating the alarms more closely, we found that 638 of them (62.2%) were generated for 5 hosts 
which were running BitTorrent client for file sharing purposes, although such activity is not allowed by 
organizational policies (see the second example in Figure 2). Also, 327 alarms (31.9%) were triggered for an 
Internet measurement probe which was accidentally connected to end user network (see the first example in 
Figure 2). According to the developer of the probe, it needs at most 100 Kbit/s of bandwidth and typical 
consumption does not exceed couple of Kbit/s (Internet Measurement Project, 2017). Despite its negligible 
network footprint, the anomaly detection framework was able to flag the probe as anomalous. Also, we found 
that the framework generated 46 false positive alarms (4.5%), with most of them being triggered by 
downloads of large files. 
 
For estimating the precision and recall of the framework for attack traffic, we conducted network scanning 
with nmap tool from one of the end user nodes during 15 hours. Altogether, the node was active for 548 hours 
during 5 month timeframe, and no malicious network traffic was observed for this node during remaining 533 
hours. Network scanning was conducted against test targets in controlled environment, and scanning 
scenarios involved different scans of a single host (4 hours) and a network of 2048 hosts (11 hours). Scanning 
types included lightweight reconnaissance scans, TCP SYN, Xmas, Fin and Null scans, and scans for detecting 
operating system and service versions. We also simulated TCP and UDP flooding attacks against the network of 
2048 hosts. All 15 hours of malicious activity were correctly flagged as anomalous (see the third example in 



 
 

Figure 2 for some detected patterns), and no false alarms were raised for 533 hours of legitimate network 
activity, yielding the precision and recall of 100%. 
 
Finally, we measured what is the impact of using multiple classifiers in the anomaly detection framework, and 
executed each anomaly detector from Figure 1 separately with weight 1 and anomaly score threshold set to 
0.5. The EWMA based anomaly detector triggered 570 alarms, clustering based detector 4020 alarms, and 
sketch based detector 1696 alarms. Table 2 depicts the performance of individual detectors for a node which 
we used for nmap scanning.  
 
 
Table 2: Precision and recall of individual detectors for nmap scanning 
 

 Precision Recall 

EWMA based detector 50% 20% 

Clustering based detector 37.5% 100% 

Sketch based detector 88.2% 100% 

 
 
The primary reason for poor recall of EWMA based detector is the fact that abnormally large values can 
significantly increase the average, so that the following similarly large values will no longer be seen as 
anomalous (this condition will persist until a sequence of smaller values will lower the average again). Also, 
although sketch based detector had the best precision and recall, it triggers more false positive alarms than 
the framework of three detectors. We have made a similar observation for other nodes in the data set, and 
the use of multiple classification methods is thus beneficial over a single classifier. 
 

5. Future Work 

The framework presented in this paper assumes that each node belongs to one person (or few similarly 
behaving persons), so that network usage habits of node owners create behavior baselines for nodes which 
can be employed for anomaly detection. However, if many persons with different assignments are sharing the 
nodes (e.g., classroom computers in a university network), it is often difficult to identify clear behavior 
baselines for them. A similar issue arises if IP addresses of nodes are frequently changing (e.g., due to DHCP 
based IP address allocation) and the same address is reused for different nodes. In order to overcome these 
issues, the framework needs to identify the end user node not by IP address, but rather by unique ID of the 
person that operates the node (e.g., an organizational user account name). Augmenting the framework with a 
monitoring module for detecting user IDs has been left for future work. 
 
As for other future work, we plan to integrate other anomaly detectors into the framework and experiment 
with methods for adjusting detector weights dynamically. We are also planning to research other approaches 
for mining traffic patterns from NetFlow data sets, and algorithms for identifying node types in organizational 
networks. Finally, we are considering to study methods for fingerprinting end users by their network usage 
patterns in large organizational networks. 
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